07

März 2018
Erster Workshop

Ziel dieses Workshops war es, eine gemeinsame Basis zwischen den unterschiedlichen Branchen zu schaffen und erste Visionen zu formulieren.

Zu den Ergebnissen

11

April 2018
Zweiter Workshop

Ziel des zweiten Workshops war es, eine ganzheitliche Betrachtung von Gamification im Life Science Kontext zu ermöglichen. Dafür wurde – aufbauend auf dem ersten Workshop – die User Experience (UX), d.h. die Nutzererfahrung, in den Mittelpunkt gerückt.

Zu den Ergebnissen

27

Juni 2018
Dritter Workshop

In einem eintägigen Simulations-Workshop werden wir gemeinsam ihre Gamification Konzepte in regulierten Arbeitswelten entwickeln. Vision trifft auf Wirklichkeit: Realitätsnah mit Argumentationshilfen gegenüber den Entscheidern.

Mehr

Unsere Idee:

Komplexität in hochregulierten Arbeitswelten
spielend beherrschbar machen.

Teilnehmen
Veranstaltungsbeschreibung

337098e Vorlesung Big Data & Web Analytics

Zuletzt geändert:27.05.2025 / Sorace
EDV-Nr:337098e
Studiengänge: Online-Medien-Management (Bachelor, 7 Semester) , Prüfungsleistung im Modul Online Marketing II in Semester 4
Häufigkeit: immer
Dozent: Prof. Dr. Jan Kirenz
Sprache: Vorlesung deutsch, Materialien englisch
Art: -
Umfang: 2 SWS
ECTS-Punkte: 2
Workload: 2 ECTS, 60 hours
Inhaltliche Verbindung zu anderen Lehrveranstaltungen im Modul: Exercise Big Data and Web Analytics (337098f).
Prüfungsform:
Bemerkung zur Veranstaltung: Deutsch
Beschreibung: In the rapidly evolving digital landscape, understanding how to leverage data and technology is crucial for success. This course is designed to equip students with the knowledge and skills necessary to navigate and optimize the digital customer journey through advanced web analytics and generative artificial intelligence technologies.

The course covers a broad spectrum of tools and techniques, from web analytics to the pioneering realms of Generative AI, including basics, state-of-the-art applications, and prompt engineering. Through a combination of theoretical foundations and practical case studies, students will learn how to interpret web tracking data, utilize social media metrics, and deploy generative AI solutions for real-world challenges. The course will also explore theoretical digital marketing frameworks, Google Ads, social media tools, and how to create interactive dashboards, providing a comprehensive view of how these technologies can be integrated to drive digital innovation.

Upon successful completion of this course, students will be able to:
    Understand the Digital Customer Journey: Gain a thorough understanding of the digital customer journey and the role of web analytics in mapping and optimizing this journey.
    Master Web Analytics Tools: Develop proficiency in using key web analytics tools, including Google Analytics, Google Search Console, and UTM Tracking, to gather, analyze, and interpret web data.
    Leverage Social Media Insights: Understand how to measure and interpret social media metrics and the impact of social media campaigns using tools like Facebook metrics and Social Media Tools.
    Apply Generative AI in Digital Strategies: Acquire foundational knowledge and practical skills in Generative AI, including prompt engineering and the use of OpenAI Assistants API, to enhance digital marketing strategies.
    Design and Deploy AI-driven solutions: Learn how to create and deploy interactive tools using Generative AI to optimize marketing workflows.
English Title: Lecture Big Data & Web Analytics
English Abstract: In the rapidly evolving digital landscape, understanding how to leverage data and technology is crucial for success. This course is designed to equip students with the knowledge and skills necessary to navigate and optimize the digital customer journey through advanced web analytics and generative artificial intelligence technologies.

The course covers a broad spectrum of tools and techniques, from web analytics to the pioneering realms of Generative AI, including basics, state-of-the-art applications, and prompt engineering. Through a combination of theoretical foundations and practical case studies, students will learn how to interpret web tracking data, utilize social media metrics, and deploy generative AI solutions for real-world challenges. The course will also explore theoretical digital marketing frameworks, Google Ads, social media tools, and how to create interactive dashboards, providing a comprehensive view of how these technologies can be integrated to drive digital innovation.
Literatur: Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (No. w31161). National Bureau of Economic Research.
Chui, M., Hazan, E., Roberts, R., Singla, A., & Smaje, K. (2023). The economic potential of generative AI. McKinsey & Company white paper,

Weitere Literatur finden Sie in der HdM-Bibliothek.

    Termine