07

März 2018
Erster Workshop

Ziel dieses Workshops war es, eine gemeinsame Basis zwischen den unterschiedlichen Branchen zu schaffen und erste Visionen zu formulieren.

Zu den Ergebnissen

11

April 2018
Zweiter Workshop

Ziel des zweiten Workshops war es, eine ganzheitliche Betrachtung von Gamification im Life Science Kontext zu ermöglichen. Dafür wurde – aufbauend auf dem ersten Workshop – die User Experience (UX), d.h. die Nutzererfahrung, in den Mittelpunkt gerückt.

Zu den Ergebnissen

27

Juni 2018
Dritter Workshop

In einem eintägigen Simulations-Workshop werden wir gemeinsam ihre Gamification Konzepte in regulierten Arbeitswelten entwickeln. Vision trifft auf Wirklichkeit: Realitätsnah mit Argumentationshilfen gegenüber den Entscheidern.

Mehr

Unsere Idee:

Komplexität in hochregulierten Arbeitswelten
spielend beherrschbar machen.

Teilnehmen
Veranstaltungsbeschreibung

337094a Marktforschung

Zuletzt geändert:27.05.2025 / Sorace
EDV-Nr:337094a
Studiengänge: Online-Medien-Management (Bachelor, 7 Semester) , Prüfungsleistung im Modul Marktforschung in Semester 3
Häufigkeit: immer
Dozent: Prof. Dr. Jan Kirenz
Sprache: Vorlesung deutsch, Materialien englisch
Art: -
Umfang: 2 SWS
ECTS-Punkte: 3
Workload: 3 ECTS = 90 hours;
Written exam
Prüfungsform:
Bemerkung zur Veranstaltung: Gem. Senatssitzung v. 15.10.21 ab WS 21/22: Änd.d.Prüfungsform in KL, 90 Min.
Beschreibung: This course offers a comprehensive overview of data-driven decision-making techniques for business related topics. Beginning with the Business Model Canvas, it highlights the importance of data in competitive analysis. Learners will explore study design, including data collection methods and a practical guide on conducting experiments and A/B-tests, essential for strategic decision-making. The curriculum advances through data preparation and analysis, emphasizing competitive market analysis and the transformation of raw data into actionable insights. The course delves into analytical models, covering classification, regression, and cluster analysis for market trend prediction. Participants will also master the usage of Generative AI tools, learning to optimize their work outcomes through effective AI utilization.

By the end of this module, students are able to:
- Effectively plan and execute market research projects
- Conduct experiments and A/B tests
- Use predictive models and clustering methods
- Utilize modern tools and technologies for data analysis
- Clearly and effectively communicate results
English Title: Market research
English Abstract: This course offers a comprehensive overview of data-driven decision-making techniques for business related topics. Beginning with the Business Model Canvas, it highlights the importance of data in competitive analysis. Learners will explore study design, including data collection methods and a practical guide on conducting experiments and A/B-tests, essential for strategic decision-making. The curriculum advances through data preparation and analysis, emphasizing competitive market analysis and the transformation of raw data into actionable insights. The course delves into analytical models, covering classification, regression, and cluster analysis for market trend prediction. Participants will also master the usage of Generative AI tools, learning to optimize their work outcomes through effective AI utilization.
Literatur: Çetinkaya-Rundel, M. & Hardin, J (2023). Introduction to Modern Statistics. OpenIntro. Inc.
Harvard Business Review (2018). HBR Guide to Data Analytics Basics for Managers. Harvard Business Review Press.
James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. (2023). An Introduction to Statistical Learning with Python. New York: Springer.
Lau, S., Gonzalez, J. & Nolan, D. (2023). Learning Data Science. O'Reilly Media, Inc.

Weitere Literatur finden Sie in der HdM-Bibliothek.

    Termine