
C A R R A C I N G S I M U L A T I O N
Implementation of Neural Network and Genetic

Algorithm_Jayoung Byeun / Tilman Kreis

The input layer is comprised of five
nodes, each representing the car's
distance to the edge of the track,
along with one neuron dedicated to
acceleration. Additionally, the
network includes a hidden layer
featuring 10 neurons and an output
layer with 4 neurons representing
the possible actions the network can
undertake: acceleration, braking,
right-turning, and left-turning.

Each neuron within the network
possesses weights signifying the
strength of its connection to other
neurons. These weights play a
crucial role in determining the
network's output. Furthermore, a
bias may be applied to a neuron,
serving as a fixed offset value.
Adjusting both weights and biases
allows for the enhancement of the
network's performance in each
generation.

IMPLEMENTAT ION

In each generation, the two best
performing networks are selected as
"parents" and their biases and weights
are crossed and mutated, resulting in a
new generation of similar networks.
The selection function uses a score
value derived from the distance
traveled by the car.

INTRODUCT ION
In this project, neural networks (NNs)
learn to navigate a racetrack using a
genetic algorithm inspired by the
principles of natural selection and
genetics. Over several generations,
these networks evolve and adapt to
improve their performance on the
track.

top_cars = sorted(cars,
key=lambda x: x.score,
reverse=True)[:2]

def sigmoid(x):
 # Clip x to avoid overflow
 x = np.clip(x, -500, 500)
 return 1 / (1 + np.exp(-x))

