ETAS

OsciVerifier

- A prototype to automatically verify the content -

of MDA oscilloscopes

Tutors:
Thomas Gemmi (ETAS)
Prof. Dr. Johannes Maucher (HdM)
Thomas Suchy (HdM)

Copyright
The data in this document may not be altered or amended without specia notification from ETAS GmbH.
ETAS GmbH undertakes no further obligation in relation to this document.

Under no circumstances may any part of this document be copied, reproduced, transmitted, stored in a
retrieval system or translated into another language without the expressed permission of ETAS GmbH.

© Copyright 2004 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging to the respective
OWNers.

Template: OsciVerifier Version: V1.0 Date of Issue: 17.02.2006

Document Meta Data:

R " o ™
OsciVerifier H ' \ :.

Document Name: OstiVeifier
Document Version: see modification protocol
Owner: Martin Kemkemer & Alexander Stindl
Project number: -
Classfication Public
Satus. Released
Filing:
Path and Filename: https.//version.mi.hdm-
stuttgart.de/svn/OsciV erifier/trunk/Documentati on/OsciVerifier Documentation.doc
Save Number 1575
Credtion Date 13.02.2006
Date of Last Save 2/17/2006 9:29 AM
Last Version Saved By: Alexander Stindl
Modification protocol:
Document | Author Date Content (Detailed Modification Protocol)
Verson
0.0 Martin Kemkemer | 13.02.2006 First version.
& Alexander Stindl
1.0 Alexander Stindl 17.02.2006 Review

Open Issues and Pending Decisions (closed issues may be deleted):

Ol | What

responsible

2/17/2006 9:29 AM

Page 2 of 27

R " o ™
OsciVerifier H ' \ :.

Table of Contents

IR [g1 oo (8o [o OSSPSR 5
11 ETASS

1.2 SYSEEM TS ittt st b e st et e 5

1.3 Measure Data Analyzer (MDA) ..o 6

14 TheProbDIEM ..o e 7

15 REQUIFEIMENES ...viitiietiitiiete ettt ettt s eb e st b e e b e sre e 8

2 ProjeCt Man@QEmMENTcooiiieieeiieeeee ettt et se b e b 9

2.1 ProOJECE PLaN ..ot et e 10

2.2 Milestone PreSentations.........ccceieieeieeieeieseese e sre s e e sre s e eeeseesre e sresresaeeneas 12

2.3 Repository Structure of OSCIVErifiercceveveiieiice e 13

3 ANalysiS& SPECITICAION......ccce et 14

3.1 INPUL INfOMMEEION .. .ot e 14

3.2 OSCIVENTEr SEATUDcovieeiireiieieriee e e 15

3.3 Logging & REPOIMINGcccrvirieiriirieiriinieesiese e e 15

I T o [TR 16

41 ThEMELNOM ..ot e e 16

4.2 A way towards implementation...........cccceevevereienenie s 18

421 USeCaseDiagramccoeiireiesereceeieesesesre e e sresseeeesaesaessessesnens 18

4.2.2 State Maching Diagram........cccceeeeeieereresesie e seeeeseesie e e sreseenees 20

4.2.3 ACHVILY DIaQramcceeeeesese e enes 21

424 ClassS DIiagram.......ccoureeririeiiniineesiesee st 22

5 IMPIEMENLELION.citiitiiitiriiet bbb 24

L3 R o = 0111/ o PO USSR 24

WA €1C 01 = 1] oo TSRS 25

LG T V= 1Y/ 1 oo R 25

5.4 Back tracking of fallUrES........cceiiiieecerece e 26

B CONCIUSION.....ouiitiiteiete ettt 27

2/17/2006 9:29 AM Page 3 of 27

. . [[] ® O
OsciVerifier H ' \ —-—s
-—

List of Figures

o 10 T R o N Y o 1TSS 6
Figure 2: Measure Data ANAYZEr (IMDA) ..ot 7
Figure 3: Rendering €ror iNthE MDAot e st r e e s e e e seessesneereeneeneeneens 8
o [0 L N o L= o . T OSSP 10
Figure 5: SUDVErSION FEPOSITONYcccuiiiirieierteeete st sttt sttt sb e sttt e b e et e e e et se et ebeseebesbeseenesbennenea 13
FIQUIE B: TNPULXIMI ...ttt sttt e e et e e saeebeeseeseeseeseesteseesbesaeeaeeseenseneeseesbesaeeneeneeneenteses 14
LT [0 AR £= oTa (o PRSP 15
Figure 8: mathematiCal MEthOG...........ceoiieiece e e e s a e r e e e e e 17
Figure 9: USE Case DI@Qramccceiuieieieeieieesiesestestesteeseeseesaes e stestessessesseesesteseestessessesseessessessessessessessessesnsens 19
Figure 10: State Chart DIBgIaIM........c.coreeiirieterie ettt sttt b e st b e e b bbb et eb e sbeseebesbeseenesbeseenea 20
[T 10 = T A ok A7 Y I 1 "o =0 o 21
Figure 12: Class Diagram in deSigN PhaSecoeeiriiiiesere st e e 22
Figure 13: Class Diagram re-eNQINEEIEa...........c.ueeiirirerie ettt sttt st s b e et b e s b seenea 23
Figure 14: different drawing MOGESccucieiiie it et e et sre s besresaeene e e eneees 25
Figure 15: Example for verification and tOIEIraNCe...........ooiririiiiirece e e e 26

2/17/2006 9:29 AM Page 4 of 27

11

1.2

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Introduction

OsciVerifier is a cooperation with the Hoschschule der Medien (HdM) and ETAS (Engineering Tools
and Application Systems) in Stuttgart. The project is basis of the lecture Software Practical at the
HdM. In this lecture students makeup their own projects, test new technologies or asin our case
companies like ETAS step up and deliver ideas for interesting projects. In the following chapters we
would like to give you a brief overview over our project, the OsciVerifier.

ETAS

The ETAS Group, formed in 2003 through the merger of ETAS, Vetronix, and LiveDevices, today
supplies a comprehensive portfolio of standardized development and diagnostic tools that cover the
complete development and service life cycles of electronic control unitsin today's automobiles.

Prior to coming together asthe ETAS Group, the three companies had already achieved considerable
success in their own rights and their own markets. With their products and services catering to various
segments of the automotive embedded systems market, they shared an exclusive focus on the
automobile industry and its suppliers. ETAS GmbH is the industry leader in providing a variety of
software and hardware development tools for electronic control unitsin passenger cars and trucks.
Closely related and synonymous with the name LiveDevices are the fast and powerful operating
systems for automotive microprocessors. Vetronix, by contrast, is positioned differently: Instead of
concentrating on the development environment, the company supplies cutting-edge diagnostic tools
for vehicle service.

ETAS provides measurement and calibration tools to automakers (OEMs) and suppliers worldwide.
ETAS hardware and software products form an integral part of the devel opment process, assisting test
engineersin their investigations ranging in scope from vehicle components to functional subsystems
or assemblies to entire automabiles.

Engineers use ETAS measurement modules and ECU interfaces to acquire reliable data and calibrate
the assemblies. INCA software products are employed in data acquisition, online and offline
calibration, and measurement data analysis.

System Test

Wikipedia: “ System testing is testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements. System testing falls within the scope of Black box
testing, and as such, should require no knowledge of the inner design of the code or logic.”

At ETAS the System Test isthe last instance of amodel called V-Cycle.

2/17/2006 9:29 AM Page 5 of 27

13

. . [[] ® O
OsciVerifier H ' \ -
-— [4

Black-Box-Tests

Requirement-
analysis ‘ Testcases > Systemtest
Systemdesign ‘ Testcases Integrationtest

\ /

Componentdesign ‘:> Componenttest

Moduldesign ‘ Modultest

N/

Implementation

Figure 1: ETAS V-Cycle

Asshownin Figure 1: ETAS V-Cycle every phase of development (except implementation) hasits
opponent in testing. This guarantees a comprehensive assurance of quality. For the System Test this
means that engineers do not necessarily know about the inner design, the code or logic of the system
being tested. Main input information are the requirements that were specified in the analysis. These
requirements have to be verified. All stepsin between may be disregarded. This proceeding allows a
good understanding of the customer’s point of view, since the product is tested that way.

Engineersin System Test are supported by tools like Seque Silktest. These tools grant automatic
execution of test cases and scenarios or automated control of the software being tested. External tools
like OsciVerifier may be automated as well. Also, these tools have the possibility of computing data
such as screenshots or xml files for instance.

Measure Data Analyzer (MDA)

The Measured Data Analyzer (MDA) program is an offline tool for displaying and analyzing saved
measured data. The datais stored in standardized measure files e.g. binary format or timestamp-value
relation (ASCII file).

The MDA hastwo different evaluation windows: the Oscilloscope display window to be used as an
oscilloscope and XY -plotter, and the table display that is especially useful for quickly viewing precise
values. Y ou can combine measured signals from different measurement files, configure their display
on the screen, and save these settings in an evaluation configuration. For the actual analysis, various
zoom functions for navigating in the measurement file, a measure cursor for measuring selected
values, and automatic difference calculation are available.

2/17/2006 9:29 AM Page 6 of 27

—
OsciVerifier — /\
- -

(MDA D: Eigene Dateien' Alex\HdM\ 8.5emester\Software Praktikum2)\TestFiles\basic'Different_Dscis.xda * - [Dscillose o =] S
b Datel Bearbeten Extras Fenster 7 _1&] =l
=e|E|aE irlcEE E 2l 6l Blm| sl Z0EEE

4 | |Uscmoscope [=] wen [00303210 pe[7EESETI0 O0s2z2. - 7743821, (5]

Dak reanzien 10

B00-

7304

L B_FRMAXETKTestdewice
1 | *T B_FRMINETKTestdevice

700+

650

BO0-

550

500+

4504

400+

350+

adinMETHT estDevice

3004

2504

2004

150

1004

Time =

1 KT i

BF.. 38 alle | Analog | *F Digtal 4| »|
|aktiv: adinOiETK TestDevice [

[|p:\Eigene DateienlexiHaM|a. semesterSoftware Praktkum2|TestFlesibasiciOscl dat .,.(2) 4

Figure 2: Measure Data Analyzer (MDA)

In the MDA severa oscilloscopes can be displayed. In Figure 2: Measure Data Analyzer (MDA) there
are two oscilloscopes. The first oscilloscope displays analog signals and the one below digital ones.
The different types of oscilloscopes will become part of the requirements later on.

Another aspect on the MDA isthat signals, especially the analog signals, may be displayed in
different modes such as step, line and timestamp mode. These modes will also be described later.

The Problem

Asamatter of fact in the MDA rendering errors may occur in an oscilloscope. So, how can you verify
the content of the oscilloscopes of the MDA, before a possible error may occur on customer side?
Manual testing is not an appropriate solution, since it is too time consuming. Present tools like
“BeyondCompare” are insufficient, because they depend on the display resolution of the test system
and have no back-tracking of failures. In addition there is no appropriate test of identifying these
errors. Therefore an additional tool will be required: OsciVerifier.

2/17/2006 9:29 AM Page 7 of 27

15

—
OsciVerifier — /\
- -

ERMDA D v MDA_DTA sarve Lo DT\ Phanturm_Value. ks * =l0|x

Fla D8 Ditse Wedse 7

rsmnenﬂlgxpg] |_i|~‘_|_LH] BIsim] sl 2l IafE s |

¥| | DucBascops [1] I fom 000170 o | 70047 0-105197 [s] CE
mﬂ-' .J.cu_l (B2 oscloscopela] alml=
Tioew [5] Teal ChEWA _[reutes
BTy £ | 000
e EL] P
e ET])
] £ il
188 20 e
asem o 0
15w o 7504
1510 0 00
15450 00 = e
EET 200 %
155 00 L
3% 7200 sy g
35638 00 5 s
3578 200 § a5
fw
e ——___ | = 35“_
3e08 (1) R =, %0y
hom_ N4 =
16159 T 200
16219 12600 - 150
mn 12200 100
biNy 1900
598 14500 L
36480 15200 0
38519 15300
3867 1R800
3663 17300
=] Hm
e 8w
g9 =
EEh] awm
] nam
11 Zm
mnm o
ne M
a7 T
37 ==
L] w0
| 8 o [snskon| o Dt | F Commris|__ & |_ B
Fl |

Figure 3: Rendering error in the MDA

In Figure 3: Rendering error in the MDA, avalueis displayed in the analog oscilloscope, which does
not exist in the measurement file. This should not happen!

Requirements

ETASgaveusalist of user problems, which had to be solved by OsciVerifier. Therefore we created
our own reguirements out of thislist of user problems (see 2 Project Management for more details).
The main requirements are:

- Automated search for failuresin oscilloscope of MDA for the different kind of signals (analog
and digital)

- Define communication between OsciVerifier and Silktest. It should be possible to exchange
information like input parameters, test results etc.

- Operate OsciVerifier viacommand line
- A back tracking of failures must be possible (e.g. timestamp or time area of failure)

- OsciVerifier must support different visualization modes for waveforms. These modes are: line,
timestamp and step mode

All functionality of OsciVerifier is based on these requirements.

2/17/2006 9:29 AM Page 8 of 27

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Project Management

Besides designing and implementing, there was also a focus on managing the project. Our first task
was to create arough project plan, which did not have a completed and fully detailed overview at first
but already had the time span of OsciVerifier and certain fixed dates like the project start, several
status meetings (no milestones yet) and the MediaNight. Also, the plan indicated the certain project
phases (see 2.1 Project Plan for more details).

In weekly status meetings at ETAS the progress of the project was discussed and decisions were made
for the further development of the project. Since ETAS was our “customer”, these status meetings
were necessary not to lose focus and stick to the customer’s user problems. Decisions and assigned
tasks were documented in a status report or sometimes in a meeting minutes excel sheet

In order to keep everybody, who was involved in the project, informed, a status report was sent every
week. The report had three parts. In the first part, everything that was done or problems that occurred
in the week before were described. The second part contained decisions or appointments that were
made in status or team meetings. The last part was an overview on what was going to happen in the
next couple of weeks.

Another task of project management was to create our own requirements of the prototype out of alist
of user problems from ETAS. In thislist ETAS pointed out several problems, which OsciVerifier had
to solve (Please refer to the document ““List_of UPs_requirements.doc” for more details). These
requirements were marked with an 1D similar to the number of the user problem and ranked with a
priority, whereas “1” means the highest priority.

An example:

ID: UP0001

Description of the problem: Automated search for failures in visualization component
(oscilloscope) of MDA for continuous signals.

List of requirements:
- Read in data files and generate legal Pixels with appropriate math algorithms

- Read in MDA oscilloscope from screenshot and compare received signal pixels with the
legal pixels.

- Search for errors
- back track failures
- generate report file (.xml)

Priority: 1

Last but not least all project documentation (project plan, UML, JavaDoc, milestone presentations ...)
had to be done in English, which was required by ETAS.

2/17/2006 9:29 AM Page 9 of 27

o " o ™
OsciVerifier H ' \-.

2.1 ProjectPlan

In asecond step, amore detailed plan was constructed, based on the previous one. The new plan,
which was going to be our guideline till the end of the project, then contained all information, which
was necessary to complete the project successfully. And, despite of afew appointments of status
meetings, which did not take place or had to be shifted to alater date, like the milestone presentation
at ETASin front System Test experts, all phases and fixed dates were planed and accomplished nearly
intime.

How did we plan?

First we inserted the fixed dates like the project start on October 18", the MediaNight on January 26™
as possible project end and the status meetings with ETAS, which took place on nearly every Tuesday.
Then we calculated backwards from the project end. We estimated an implementation time of 70
hours per student, which could be done in 7 weeks. Important to us was the design phase, for what we
calculated 3 weeks. The remaining 4 weeks were separated in 3 weeks of creating a Feasibility study
and one week of approving the concept, chosen in the feasibility phase.

2005 | November 2005 | Dezember 2005 | Januar 2006 | Februar 2006
[og.[11.14.[17.[20.|23. |26 [28 (0104 [07.[10.13.[16.[19.[22.|25. 28 [01. |04, [07 [10.[13.[16.[19.[22.[25. (28 [31.[03. |06 [08.[12.[15.[18.[21.|24.|27 |30 [02. [05. [08. [11.[14.[17.[20. 23
18.10. ¢ Osci Start

26.01. ¢ MediaNight
2 2 @ @ 2 @ @ & @ @ & & @ &
18.10. 4 Status Meeting 1
25.10. ¢ Status Meeting 2
10.11. ¢ Status Meeting 4
15.11. 4 Status Meeting 5
22.11. ¢ Status Meeting 6
29.11. & Status Meeting 7
06.12. ¢ Status Meeting 8
13.12. ¢ Status Meeting 9
20.12. ¢ Status Meeting 10
03.01. ¢ Status Meeting 11
10.01. 4 Status Meeting 12
17.01. 4 Status Meeting 13
24.01. ¢ Status Meeting 14
09.02. ¢ Status Meeting 15

Feasibility
Prove of concept
Design

Stage 1: Input/Output validation
Stage2: ldentifying | Generating

Stage3: Result Retrieval

Staged: Prototype Completion

Create presentation s

Figure 4: Project Plan

Note that important milestones are marked with two red circles (&). On these dates the individual
presentations were held. The marker for the presentation at the HAM (“ MI-Présentationstag”) misses
in this example, but may be supplemented by the MediaNight marker, since the presentation day at the
HdM is aways the day before the MediaNight.

2/17/2006 9:29 AM Page 10 of 27

R " o ™
OsciVerifier H ' \ :.

Theindividual project phases:

Feasibility:

Severa strategies of solving the problem (to automatically verify the content of MDA
oscilloscopes) had to be found and evaluated. In total we received three methods, which were
capable. The first method (“Graphical”) would generate a mask out of the measurement file and
identify an error in the overlay of the two pictures. The second method (“Measured Data’)
basically did the same, but instead of overlaying the masks, two arrays of pixels, which were read
from the two pictures, were compared. An error would be found, when there is a pixel valuein
one array, but not in the other.

The third method (“Mathematical”), our chosen one, also compared two arrays of pixels, but did
not create a mask to read pixels from. Instead these pixels are generated directly from the
measurement file using appropriate math algorithms. This method will be described in detail later
on. Please see the document “01_Feasibility Study.ppt” for more information on the other
methods.

Prove of concept:

This phase was necessary to check for possible risks that may occur during the project and if the
chosen method from the feasibility phase is even practicable. Aswe chose Java as programming
language, we had to check for the legal rights of certain libraries (e.g. JDOM), since ETAS s
going to use OsciVerifier in the System Test. Possible risks for example were that the needed
math algorithms may not apply or are too hard to implement and if there is away to calculate
between measurement values and pixel values, which would guarantee a back tracking of failures.

We decided that the risks are minimal and the solution should work. Also, there are no legal
problems with the used Javalibraries.

Design:

This phase was very important to us, since we wanted to avoid as much error potential as possible.
Also, it was necessary to divide the tasks of implementing in an appropriate and well known way.
Without designing we would have had a hard time of knowing who is implementing exactly what.

We did 2 weeks of designing and accomplished following diagrams:
0 UseCaseDiagram
0 State Diagram
0 Activity Diagram
0 ClassDiagram

These diagrams helped us not to lose focus. They are described in an extra chapter (4 Design).

Implementation:

The implementation phase was subdivided into 4 stages. These stages were part of the
requirement of stage delivery, which means that we had to deliver our sourcesto ETAS after

2/17/2006 9:29 AM Page 11 of 27

2.2

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

every stage for testing purposes:

(0]

Stagel: Input/Output validation

This stage implemented the read in of all input files (input.xml, measurement file, signal
screenshot and reference screenshot).

Stage?: |dentifying / Generating

In this stage, we had to generate legal pixels out of the measurement file and to identify
the different signals and oscilloscopes (analog & digital) from the given screenshots. The
identified signals had to be saved in signal pixels.

Stage3: Result Retrieval

After Identifying / Generating we had to compare the two arrays of pixels (legal & signal
pixels) in order to find a possible error. Also, the time of the error had to be qualified as
well as aresult file needed to be written.

Staged: Prototype Completion

Prototype Completion meant that we had to test prototype functionality, rework possible
varietiesin the diagrams from design phase and complete JavaDoc and source code
documentation.

Create presentation:

This phase reminded us to keep atime buffer to create a presentation for the MediaNight and
ETAS.

Milestone presentations

At the end of every important phase a milestone presentation was held. All together there were four
presentations:

Feasibility Study: All methods of solving the problem were described and rated (Pros & Cons) in

this presentation.

Design: All diagrams, created in the design phase were presented. Also, first implementations

from Stagel: Input/Output validation were demonstrated.

MediaNight: A brief overview over the whole project was presented at the “ MI-Présentationstag”
at the HAM.

At ETAS: A more detailed and more technical presentation than the one for the MediaNight with

agood insight in the architecture of the project. It lasted about 45 minutes and was held in front
of ETAS System Test experts.

2/17/2006 9:29 AM Page 12 of 27

2.3

. . [[] ® O
OsciVerifier H ' \ -1
-— [4

Repository Structure of OsciVerifier

In order to guarantee a smooth proceeding in the different phases of the project, especialy in the
implementation phase, we decided to use the HAM’ s subversion server to keep a clear repository
structure of OsciVerifier. So, everybody of the team always had the actual project data, and no one
had to merge source code files or build new versions of the tool.

i
LRL: I https: {fversion. mi.hdm-stuttgart, defsynfOsciverifier ftrunk/Documentation j Revision: HEAD |
File | Extension | R.evision | Author Size | Date |
El 5 https:fversion.mi hdm-stutbgart, defsvnf Osciverifier

= =) trunk
El |5 Documentation 78 ashy 16.02,2006 00:44:06
fier_Documentation.doc 78 as B 16 06
El |5 Osciverifier 73 asSv 13.02.2006 00:07:32
B 3 de 73 asa? 13.02,2006 00:07: 32
B [ETAS 73 asa? 13.02,2006 00:07:32
=[5 Osciverifier 73 assv? 13.02.2006 00:07:32
=) Application 73 ass7 13.02.2006 00:07:32
E’I Osciverifier.java java 73 ass? &KE 13.02.2006 00:07:32
|§’| TestApplication. java java 73 ass? 12KB 13.02.2006 00:07:32
|2 DataStorage 73 ashy? 13.02,2006 00:07:32
I InputOutput 73 assv 13,02,2006 00:07:32
|5 Osciloscope 72 asav 09.02,2006 00:54:24
I) Startup 73 asa? 13.02.2006 00:07:32
|5) Utilities 73 ass? 13.02.2006 00:07:32
) org 32 ass? 09.01.2006 14:49:27
.classpath classpath 5 ash7 1KE 19.12.2005 23:40:55
.projeck project 8 ass? 1KE 19.12,2005 23:435:47
I PM 77 asay 15.02,2006 12:20:01
B |5 TestData 75 asa? 13.02,2006 00:24:09
|5 Osciverifier_data 75 assv? 13.02.2006 00:24:09
Osciverifier. jar jar 75 ass? 175KE 13.02.2006 00:24:09
2] cutput.lag Iog 75 as57 7KE 13.02.2006 00:24:09
runCsciverifier.bat bat 75 assy 1KB 13.02,2006 00:24:09
| | i
Hint: Press FS ta refresh the selecked subtres and Chrl-F5 to load all children too ,TI Help |

Figure 5: Subversion repository

Asshown in Figure 5: Subversion repository there are four folders below the trunk of the repository.
The documentation of OsciVerifier liesin the “Documentation” folder. All sources of OsciVerifier are
inthe “OsciVerifier” folder. The“PM” folder contains the project plan and the milestone
presentations. The last folder “TestData” includesreal test data, an executable JAR file of OsciVerifier
and a batch job to start it. This example was demonstrated at the MediaNight and has a built in error in
one of the given screenshots that is supposed to be found with the tool.

2/17/2006 9:29 AM Page 13 of 27

3.1

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Analysis & Specification

Before we could start with the programming of OsciVerifier we had to analyze and specify certain
procedures. In short, we had to find answers to following questions:

- What kind of input information is necessary?

- How isthisinformation provided?

- How is OsciVerifier started or how does it communicate with other applications?
- What about Logging and Reporting?

These questions will be answered in the following chapters.

Input information

Thereis quite alot of information required for the automated verification of an oscilloscope.
OsciVerifier needs two screenshots, one to identify the oscilloscope and one to identify the signal
inside of the oscilloscope. Both, the oscilloscope and the signals, are identified by their color,
therefore thisinformation is required as well.

In order to generate legal pixels, the measurement file is necessary aswell. Also, OsciVerifier needs
the location of these test filesin the file system to able to find them. For the result file information like
the unit of the axis, the report location and an explicit test ID are interesting. To achieve a back
tracking of failures, the exact start and end values of the axis are valuable.

All thisinformation is provided and read by Silktest, which generates axml file:

<testsetupr
<test id="Enk APC">
<general>
<path file="C:/Tewmp/TestData"/>
<ref file="Ref analog.bmp"/>
<bgoolor ©="0" g="0" L="Z55"/>
<report file="result_ Knk APC.xml"/>
</general>
<section id="Enk AFC_ 17>
<signal name="Enk APCY mode="step"” type="analog” file="3ec 1l.bmp" r="255" g=rioon =100ty
<weasure file="Neasure Sec_l analog.ascii™/»
<xaxis unit="ح5" start="0" end="30"/ >
<yaxiz unit="" start="3.Z6875" end="745.35625" >
</gection>
</test>
</testsetup>

Figure 6: input.xml

Thisxml fileis arequired startup parameter. OsciVerifier parses the file and stores all the information
in corresponding Java classes. Note, that thereis a TestSetup, Test and Section classin OsciVerifier
just likein the xml file.

2/17/2006 9:29 AM Page 14 of 27

3.2

3.3

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

OsciVerifer startup

OsciVerifier is started over the command line. Therefore all sources were packed in an executable
JAR file, which may be started with certain parameters in a batch job:

java - Xns200M - Xmx400M -j ar Osci Verifier.jar
"C./ Tenp/ Test Dat a/i nput.xm " -tol erance: 2 -debughbde: ON > out put.| og

Since we had problems with the large amount of data (one screenshot with a size of 2MB) being
inspected, we had to raise the minimum and maximum heap size of the Java Virtual Machine, which
is done by using the parameters - Xns and —Xnx.

Thefirst parameter after the JAR file, which isinitialized with —j ar , delivers the location and name
of the input.xml file. To define atolerance, in which the specific signal pixels haveto lie, the
parameter - t ol er ance: x isused. Also, adebugging mode isimplemented, which will display
possible errors graphically. This allows testers to reproduce certain test cases by hand and verify the
corresponding result. To turn on debug mode use - debugMode: ON. The parameters of tolerance and
debugM ode may be omitted, since they both have default values (“4” for the tolerance and “ OFF” for
debugMode).

ThePipe“> out put . | og“ capturesthe logging information printed out by OsciVerifier in aLOG
file.

Logging & Reporting
Logging is done by capturing the output of OsciVerifier in aLOG file as mentioned above.

A more important feature is the reporting. As areport, OsciVerifier generates axml file, listing result
information for every test run. Thereis always one report file for every test in atest setup.

<Testresult>
<test id="Enk APC">
<gsection id="Knk APC 1" result="OE" />
<gection id="Enk APC 2" result="oE" s
<gection id="Enk APC 3" resulc="FAILED" errors="4">

<error0 atXZ="73.2484076433121" unitX="s" ac¥="223.14519230769233" unitcy¥="" />

<errorl atX="73.28025477707007" unitX="s" at¥="223.14519230769233" unit¥="" />
<errorZ atE="73.31210191082802" uniti="s" at¥="223.14519230769233" unicy="" /=
<error3 atZ="73.34394904458598" unitX="s" at¥="223.14519230769233" unit¥="" />

</zection>
<section id="Knk APC 4" result="OE" />
</ test>
</ Testresult:>

Figure 7: report.xml

Asshown in Figure 7:report.xml for every section in atest thereisaresult. If any errors occur, the
total amount of errors and detailed information of the first 100 errors are listed for the sorresponding
section. In order to still receive some report information in case of a system crash, OsciVerifier writes
and overwrites the report file every time a section has finished.

2/17/2006 9:29 AM Page 15 of 27

41

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Design
The feasibility phase was used to prove different methods to verify the content of an oscilloscope.

In the design phase the system components and their interaction were specified. The chosen method
needed to be transformed in a system design. We used the Borland Together Architect 2006 to create
different kinds of UML 2.0 diagrams.

At this point the method gets explained so that the context between method and diagrams can be
understood.

The method

In the feasibility phase we thought about different methods to verify the content of an oscill oscope.
We came up with three versions to solve the main challenge.

- Method 1 (graphical): Overlay of two oscilloscope pictures
- Method 2 (measure data): Compare measure data
- Method 3 (mathematical) Generate table of legal pixels

All of the three methods of course had different advantages and disadvantages. At this point | will
only talk about the proceeding of method 3, which we decided to implement.

The most important advantage of this version was that there was no necessity to build an additional
mask. Unlike method 1 and method 2, the mathematical version was not using any kind of picture
comparison. By not creating a reference oscilloscope on the host machine to be compared with some
screenshot taken by another machine, we avoided dependencies on the graphical environments e.g.
display resolution.

2/17/2006 9:29 AM Page 16 of 27

R " o ™
OsciVerifier H ' \ :.

Generate table of legal pixels

Table 1
Input 1: Screenshot X, Y,
1 1127
2 10
3 2155 ERROR! Pixel not in
table of legal pixels.

Input 2: Measurement file

Table 2
X Y X Y,
Generate legal pixels
1 | 10 galp \ 1123
2 20 Line Mode: 2 N 1450
y=m*x+C
3 30 (Bresenham) 3 | 2155

Figure 8: mathematical method

Proceeding:

Likein all of the methods there are two input documents to be used.

Thefirst input is the screenshot taken from the MDA. This screenshot holds the oscill oscope with the
specified signa information generated by the MDA graphic library. It therefore shows the possible
errorsto be found.

Second input document is an ASCII measurement file. Thereisasinglefile for every signal in any
oscilloscope. Thisfile holds the real measurement data. The datais assumed to be the correct data to
be drawn.

Thefirst step isto identify the relevant oscilloscopes. The information to be saved about every
oscilloscope is the starting point (upper left corner) aswell asthe x- and y-size. With thisdatait is
now possible to identify and read the actual signal data values. The pixel values of the signal file are
stored in an ArrayList. The ArrayList correspondsto “Table 1" in the above diagram.

Second step is the generation of the legal pixels. We use the measurement file data to generate the
corresponding pixel data. Thisis achieved by using different math algorithms. The OsciVerifier
implements three different modes. They are going to be described in detail |ater. The generated pixel
datais stored in an ArrayList which isdisplayed as“Table 2" in the above diagram.

To get the actual error pixels, the two ArrayList are now compared. Every signal pixel which has no
corresponding legal pixel isan error pixel. Thereis atolerance used to compensate possible rounding
errors and asignal file which is usually two pixels thick. This tolerance expands the legal pixelse.g.
with atolerance of 4 not only the legal pixel but every pixel in arange of 4 pixelsis recognized to be

2/17/2006 9:29 AM Page 17 of 27

4.2

421

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

ok.

After identifying the error pixels, the data gets scaled back to the measurement scale. Like thisyou
can later easily identify the error in the corresponding oscilloscope. When taking a short look at the
relevant oscilloscope, no one iswilling to work with the pixel coordinates the error was found at.

Advantages:

- Very accurate

- Flexibleto any kind of input (e.g. resolution, peaks, pauses, €tc.)
- No need to create an additional mask to compare two screenshots
- Approved mathematic algorithms

Disadvantages.
- Large amount of data has to be processed and stored

A way towards implementation

To gain a structural approach towards implementation and get a basis for discussion it was necessary
to work out some UML conform diagrams. The diagrams turned out to be very useful with regard to
any discussion about the tasks of the different classes or components, potential changesin architecture
or just the partitioning of the code to be implemented.

Also our first design did not match the later implementation in detail, the main structure was
maintained. For documentation purposes there are two class diagrams shown. The first oneis the one
worked out in the actual design phase, the other one is gained by reengineering the code at the end of
implementation.

Use Case Diagram

The Use Case Diagram is a technique used to record the functional system requirements. They
describe the typical interactions between the system user and the system itself. They explain how a
systemisto be used.

The Application SilkTester is modified as the only SystemUser. All it can do isjust “run the
OsciVerifier”. We see that this Use Case includes some other Use Cases like “process Test” or “read
input XML". Actually this Use Case Diagram was the first diagram to be drawn, it includes too much
information about the system itself. This system information is better kept in the Activity Diagram as
we see later on.

2/17/2006 9:29 AM Page 18 of 27

run Osciverifier

SilkTester

read inpuk XML

identify oscilloscope

determine position and size
of osciloscope

Figure 9: Use Case Diagram

2/17/2006 9:29 AM

OsciVerifier

process Test

=TAS

generate result XML

compare kables

determine signal pixel

table

Page 19 of 27

trace back error
pixels

generate legal pixel table

read measure data

R " o ™
OsciVerifier H ' \ :.

4.2.2 State Machine Diagram
State Machine Diagrams are a usua technique to describe the behavior of a system.

The OsciVerifier knows two main states, which are idle and active. Default modeisidle. After starting
the OsciVerifier its state changes from idle to active. It then can pass through a couple of sub states. In
the diagram the OsciVerifier executes all of the test cases (tests) and writes afinal result ASCI| file,
before it shuts down.

In the actual implementation of the OsciVerifier we decided to write aresult xml file after every test.
This has the advantage that in the case of an anticipated system breakdown, at least the test results that
have been processed until the breakdown are saved.

active
open first testcase
[input parameters available] Festcase daka available
[] (-
read inputfile open further tescase
|’ e finding size and position of oscilloscope read measuremnet Fils
pstilloscope available [ﬂeasurement kable available
read oscilloscope generate legal pixles

[:uscilloscope data kable available] [e%al %ixeltable available
collect all resules in & caollection IA L J

Final result of a testcase available]
[]

save resultfno error Found] compare tables

Entermediate result kable available]
]

write final result ascii file[firgshed with all testcases)

Ee%ort ascii file availablel convert error pixels in timestamplerror Found]

FimP of errar available
]

shut down application

®

save result

Figure 10: State Chart Diagram

2/17/2006 9:29 AM Page 20 of 27

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

4.2.3 Activity Diagram

Activity Diagrams are a technique to describe procedural logic, business processes and workflows. In
contrast to flowcharts they are able to display parallel behavior.

This Activity Diagram was created for presentation purposes after finishing the implementation. It
describes the procedural logic of the OsciVerifier.

A read input XML and ‘
.9{ run Osciverifier H measure data file H process Test |

read measure data indentify oscilloscope
generate legal pixels determine signal pixels

4| [Further kest in testSetup] Il

determing errar pixels

[error pixels Found] ™

trace back errors

- —| [no error pixles Found] ™

|[n0 further test in testSetup] Il

® |

write resulk XML

Figure 11: Activity Diagram

2/17/2006 9:29 AM Page 21 of 27

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

4.2.4 ClassDiagram

The Class Diagram is the most common UML diagram. Class Diagrams describe the object typesin
the system and the different static relations between them. In addition they show the features and
operations of a class and tell you what kinds of restrictions are existent for object relations

Thefirst Class Diagram shows the system as specified at the beginning of the project. Some of the
classes and operations were not used in the later implementation, but overall the design tended to
simply the system. The second diagram, which is reengineered is more complex and includes a couple
of classes with functionality we were not aware of at the very beginning.

Osciverifier.Test Osci¥erifier.Section

+Test

yAxisEndtint

]

Utilities

TimeOFError
CompareTables
GeneratelegalPixel Table

generalfeportFile: String
qgeneralfefFile: String
generalMdrFile: String
generalBgiaresnyalue:int
sections:int[]

testID:int
generalPathFile: String
generalBgRedvalue:int
generalBgBluetalue:int

signalBluetalue:int
wiisUnie: Skring
xAxisUnit: String
signalMamne: String
measureFile: String
signalareenialue:int
xhisStartink
seckionIDvink
signalRedYalue:int
wivxisEnd:ink
wixisStark:ink

%

Osciverifier.XmlParser

Dsci¥erifier.TestSetup

Osci¥erifier.starter

+mainvoid

J/ 1 1y

+TestSetup
+getTestSetup: TestSetup

Osciverifier.XmlSerializer

OsciVerifier.Dsci¥erifier

Dsci¥erifier.TestApplication

test: Test

+parselnputFile:void
+runTest:vaid

timeOfErrorsTable: Table
resultPixelsTable: Table

legalPixelsTable: Table
errorPixelsTable: Table

Osci¥erifier.SystemTestClass

oscilloscopes: Oscilloscope(]

writeResult:void

+hestFindOsciloscopes:void
+testParser:void
+resttlities: void

U

[

OsciVerifier.Dscilloscope

Osci¥erifier.Table

startingPoint ink[]
sizeint[]

+Table
+Table

~+getResultPixelsTable: Table
+indSizeink[]
+getOscilloscopes: Oscilloscope[]
+openSecondScreenshaot void
~+openFirstSoreenshot;void
~+findstartingPointink[]

Figure 12: Class Diagram in design phase

2/17/2006 9:29 AM Page 22 of 27

OsciVerifier

=TAS

de.ETAS.Osciverifier.InputOutput.ReadMeasurementFile

de.ETAS.Osciverifier.DataStorage.TestSetup

de.ETAS.Osci¥erifier.DataStorage.Section

+readData: ArrayList

de.ETAS.Dsci¥erifier.InputOutput. XMLParser

+parse: TeskSetup

de.ETAS.Osciverifier. Application.Osciverifier

| +addTest:void
+addSectionTaTest waid
-getTesk: Test

+5ection =
+aetixisEnd:double —

de.ETAS.0sciv¥erifier.DataStorage.Test

+Test
+addSection:void

+Csciverifier

-parselnputFile:void
-readDataFromMeasuremnantFile: void
-runTestSetup:vaid

de.ETAS.Dsciverifier.InputOutput.XMLSerializer

de.ETAS.Osci¥erifier.Application. TestApplication

+seriglize void

de.ETAS.0sciYerifier.Startup.Starter

+main:+oid

+Testapplication
+runTest:void
-getsignalPizelsTable:void
-comparePixelTables void
-writeResult:void

de.ETAS.Osci¥erifier.Utilities. TimeDFfError

+TimeCFErrar
+getTimeCfErrar:void

de.ETAS.0sci¥erifier.Oscilloscope.OsciStarter

de.ETAS,Osciverifier.Utilities.Bresenham

+runivoid
+showBMP void

de.ETAS.0sci¥erifier.Oscilloscope.Dscilloscope

+lineMode: ArrayList
+skepMode: ArravList

IFrame
de.ETAS.0sci¥erifier.Oscilloscope.MainFrame

-ostilloscopelmage: Image
+size:Lnit
+starkingPaink: LUnit

de ETAS.Osci¥erifier.Utilities.Scale

+MainFrame

+indOscilloscopesPosandSize: Oscilloscope[]
-groessePruefen:boolean

-grabPixels:void

-getSingledscilloscope: Oscilloscope
-handlesinglepixelarray vaoid
-handlesinglepixelarrayList:vaid
+getSingleDsciloscopelmage : Image[]
+getResultPixels: ArrayList

de.ETAS5.0sciYerifier.DataStorage.Unit

+Unit
+Lnit
+Lnit

+5cale
+scalezMeasuredDatarvoid
+scale2Pixels: void

+equals;boolean

Figure 13: Class Diagram re-engineered

2/17/2006 9:29 AM

JFrame
de.ETAS.Osci¥erifier.Utilities.PixelPainter

+PixelPainter
-drawPixels:void

Page 23 of 27

51

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Implementation

OsciVerifier was implemented in Java. Implementation Environment was Eclipse 3.1. The Code was
structured into 6 packages, with atotal amount of 18 classes and about 2600 lines of code.

Identifying

Both oscilloscope as well as signal pixels are identified by grabbing all of the pixelsin the screenshot.
The needed pixels are filtered and stored in either an array or an array list.

Identifying the different kinds of oscilloscopes:

To identify the different kinds of oscilloscope the OsciVerifier uses a given reference screenshot of
the MDA for every test. This means that every section in atest refers to the same reference screenshot,
but also has an own equivalent screenshot of the MDA (due to position and size of the oscill oscopes)
with the specified signal in the foreground.

This simplifies the whole process by identifying the oscilloscopes position and size only once and
then using the determined information to read at the right positions at all of the section screenshots.

The reference screenshot contains no signal data. It shows the oscilloscopes as single colored plain
areas. This color is specified through the input XML file and used to identify the oscilloscope.

The algorithm to determine the starting point and the size of the oscilloscopes counts the number of
pixels with background color in every row and in every column. It then checks for the most appearing
number for the columns and stores the index of the first and last column with this number. The same
procedure is used for rows, only that for the rows there are two starting and two end points.

The points stored represent the x-coordinates and the y- coordinates of the oscilloscopes. This
algorithm is functional because the oscilloscopes always got the same x-Axis start and end point and
the oscilloscopes do not overlap.

In order to separate an analog oscilloscope from a digital one the color of the integrated signal is
decisive.

0o Andog: red = 255 and green, blue = 100 to 200
o Digital: blue =255 and green, red = 100 to 200

It also would have been possible to identify the different types of oscilloscopes by their position. In
this case the analog one would have been the upper one and the digital oscilloscope would have been
the lower one. The OsciVerifier still distinguishes the oscilloscopes by the signal color, this makes
further oscilloscope types more easily adaptable. With three oscill oscopes the order of the
oscilloscope types would not be predictable any more.

Identifying the actual signals:

For every pixel in the oscilloscope matching the color specified in the section, the corresponding
coordinates are saved (including possible error pixels) in an ArrayList. This ArrayList islater
compared with the legal pixels.

2/17/2006 9:29 AM Page 24 of 27

5.2

53

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Generating

In order to find any error pixels the OsciVerifier needs to compare the previoudy identified signal
pixelswith alist of legal pixels. Thislist is available in form of the measurement file.

To generate the legal pixels out of the measurement data it is necessary to:

- Scale the measurement values into pixel values. Thisisdone by determining the ratio between
pixel and measurement value (rule of proportion).

- Generate al of the pixels, drawn in between the single measurement points. The MDA itself
works with different modes to connect the measurement points. In order to get equivalent results
the OsciVerifier needs to implement certain algorithms for these modes:

|
LINE:/ STEP: I TIMESTAMP:
|

Figure 14: different drawing modes

0 LineMode

Isimplemented with the Bresenham Line Algorithm, this algorithm generates pixels
which lay on adirect line between two measured pixels

o Step Mode:
Self-implemented
o Timestamp:

Not necessary for the minimum pixel size, but it needs further implementation if a
greater pixel size or different marker forms (triangle, square) are requested, this was not
part of the requirements.

Verifying

Verification of the correct representation of the signal pixelsis achieved by comparing the signal
pixels with the legal pixelsincluding the tolerance. The tolerance which may be defined at the
program startup tolerates signal pixels close to actual legal pixels. This small variance can not be
avoided. It is caused by rounding errors (scaling measuring data into pixels) and by the fact that the
signal line might be up to two pixels thick.

In the lower diagram we see the two red filled drawn pixels. For these two pixels the corresponding
legal pixel can lay anywhere right next to one of these two pixels. With the minimum tolerance of 2
pixels (green area around the filled blue pixel) al of the possible spots for the red pixels are covered.

2/17/2006 9:29 AM Page 25 of 27

54

—
OsciVerifier - /\
— -

Y
; \/ = legal Pixels
NN~
i = tolerance
7
7 = signal Pixels

Figure 15: Example for verification and tolerance

Back tracking of failures

If an error isfound its pixel coordinates get scaled back to the corresponding measurement coordinate.
Thisis achieved by scaling. The x-value will be scaled back to atimestamp. The y-value will be
scaled back to a possible measurement value.

Scaling is needed because the measurement scale does not match a pixel scale. It is done by
determining the ratio between pixel and measurement value (rule of proportion).

After scaling the start x-value of the certain oscilloscope, it has to be added to the x value of the error.
Thisis because not every oscilloscope starts with zero, but can show arange of possible values
starting for example with 30 and ending with 60.

2/17/2006 9:29 AM Page 26 of 27

. . [[] ® O
OsciVerifier H ' \ —-—s
-— [4

Conclusion

In avery interesting project, we were able to learn more about programming with Java, the field of
system testing and project management. Altogether it was a great opportunity to work with and for a
company like ETAS. Thanksto Mr. Gemmi we were greatly supported in al the processing of the
project.

It is apleasure to see, that students and their skills were able to solve a concrete problem of a
company. Interesting to experience was that ETAS is not the only company with a problem like this.
On the MediaNight, we spoke to people, having similar problems of verifying the content of pictures.

Besides, that OsciVerifier is aready used in System test, there might be the possibility to expand or
rework the tool in additional software projects or even in adiplomathesis.

2/17/2006 9:29 AM Page 27 of 27

